The Tool
What is it?
Quantisweb is a patented multi-objectives (targets) and multivariate Stochastic Approximation Optimization methodology and software which offers an alternative to traditional DOE methods; Expert Systems; Optimization, Simulation, Statistical software; Data Mining and last but not least “trial and error” to formulate or optimize a product recipe or a manufacturing process simultaneously.
- Quantisweb determines the model (behavioural laws) of random systems with a minimal number of experiments.
- Quantisweb generates an objective function (goal) using the desired product properties.
- Quantisweb generates an optimal design (recipe) by optimizing the objective function and the model.
Value Proposition – How are we different?
- Integrates Subject Matter Expert’s knowledge.
- Considers desirable properties and their relative importance, as well as qualitative properties.
- Reduces the time required to reach an optimal answer for a complex problem significantly by:
- Generating a minimal dynamic DOE (mdDOE)
- Handling critical, non-critical variables and associated constraints simultaneously.
- Optimizing ingredients and processes simultaneously.
- Using outputs of processes as inputs to subsequent processes.
- Warning that product properties objectives might not be met without reviewing variable ranges and/or replacing ingredients.
- Minimizes the data mining effort required when using historical data by:
- Requiring the data from a minimal number of different production runs.
- Validating the data for anomalies or corruption.
- Estimating up to 15% of missing data for a property value.
- Improve profits by reducing R&D and manufacturing costs, and time to market.
Uniqueness
- Starts with the end in mind. Leads user to determine desired product and process specifications at the outset.
- Handles product and process variables and constraints simultaneously.
- Eliminates Statistical Analysis. Chooses design of experiments method on its own from an internal library.
- Deals with large problems. Generates np+1 experimental values for any number of variables regardless of the number of levels for each variable.
- Provides X-Y patterns. Generates behavioral laws, using experimental values and associated results of experiments.
- Chooses optimization method on its own from an internal library and optimizes combination of variables to reach.
- Indicates existence of variability as well as parametric limitations.
Assumptions
- The statistical error is negligible or under control.
- The application does not want to understand the phenomenon.
- The application does not create perfect behavioral law models – only patterns.
Innovation
- The way the application estimates the interaction of the X’s using a combination of parametric and/or nonparametric methods to generate Np+1 experimental values.
- The way the application uses the Y’s measured from these experimental values to sequentially generate the behavioral laws based on the descending order of the importance of the Y’s.
- The way the application generates a goal function that generalizes the loss function of Taguchi.